Traveling Salesman Problem

One version of the Traveling Salesman Problem (TSP) is to minimize the total
airfare for a traveling salesman who wants to make a tour of n cities, visiting each city
exactly once before returning home. Figure 6.4.3 shows a weighted graph model for the
problem; the vertices represent the cities and the edge-weights give the airfare between
each pair of cities. A solution requires finding a minimum-weight Hamiltonian cycle. The
graph can be assumed to be complete by assigning arbitrarily large weight to edges that
do not actually exist.

Figure 6.4.3 Weighted graph for a TSP.

The TSP has a long history that has stimulated considerable research in combinatorial
optimization. The earliest work related to the TSP dates back to 1759, when Euler
published a solution to the Knight’s Tour Problem (see Exercises). Other early efforts
were made by A.T. Vandermonde (1771), T.P. Kirkman (1856), and of course W.R.
Hamilton (1856).

The problem of finding a minimum-weight Hamiltonian cycle appears to have been
first posed as a TSP by H. Whitney in 1934. M. Flood of Rand Corporation recognized
its importance in the context of the then young field of operations research, and in
1954, three of his colleagues at Rand, G. B. Dantzig, D.R. Fulkerson, and S.M. Johnson

([DaFuJo54)), achieved the first major breakthrough by finding a provably optimal tour of
49 cities (Washington, D.C. and the capitals of the 48 contiguous states). Their landmark
paper used a combination of linear programming and graph theory, and it was probably
the earliest application of what are now two of the standard tools in integer programming,
branch-and-bound and cutting planes.

The next dramatic success occurred in 1980 with the publication by Crowder and
Padberg of a provably optimal solution to a 318-city problem ([CrPa80]). To enumerate
the problem’s approximately 10°%° tours at the rate of 1 billion tours per second, it would
take a computer 109 years. The Crowder-Padberg solution took about 6 minutes by
computer, using a combination of branch-and-bound and facet-defining inequalities.



Heuristics and Approximate Algorithms for the TSP

DEFINITION: A heuristic is a guideline that helps in choosing from among several pos-
sible alternatives for a decision step.

Heuristics are what human experts apply when it is difficult or impossible to evalu-
ate every possibility. In chess, the stronger the player, the more effective that player’s
heuristics in eliminating all but a few of the possible moves, without evaluating each legal
move. Of course, this has the risk of sometimes missing what may be the best move.

DEFINITION: A heuristic algorithm is an algorithm whose steps are guided by heuris-
tics. In effect, the heuristic algorithm is forfeiting the guarantee of finding the best solu-
tion, so that it can terminate quickly.

Since the TSP is NP-hard, there is a trade-off between heuristic algorithms that run
quickly and those that guarantee finding an optimal solution. Time constraints in many
applications usually force practitioners to opt for the former. An excellent survey and
detailed analysis of heuristics are found in [LaLeKaSh85]. A few of the more commonly
used ones are given here.

The simplest TSP heuristic is nearest neighbor. Its philosophy is one of shortsighted
greed: from wherever you are, pick the cheapest way to go somewhere else. Thus, the
nearest-neighbor algorithm (appearing on the next page) is simply a depth-first traversal
where ties are broken by choosing the edge of smallest weight.

Algorithm 6.4.1: Nearest Neighbor
Input: a weighted complete graph.
Output: a sequence of labeled vertices that forms a Hamiltonian cycle.
Start at any vertex v.
Initialize [(v) = 0.
Initialize i = 0.
While there are unlabeled vertices
ii=i+1
Traverse the cheapest edge that joins v to an unlabeled vertex, say w.
Set l(w) = 1.

UVi=w

As is typical of greedy algorithms, the nearest-neighbor heuristic is very fast, and it
is easy to implement. The algorithm sometimes performs quite well; for instance, for the
weighted graph in Figure 6.4.3, it produces the optimal solution if it starts at the top

Vertex.



